Съдържание
- Уникалният принос на гравитацията
- Решаване на проблеми със свободно падане
- Кинематични уравнения за свободно падащи обекти
- Системи за движение и координати на снаряда
- Да го измъкнем от парка ... Далеч
- Въздушна устойчивост: всичко друго, но „нищожно“
Свободно падане се отнася до ситуации във физиката, при които единствената сила, действаща върху даден обект, е гравитацията.
Най-простите примери възникват, когато обектите падат от дадена височина над повърхността на Земята право надолу - едноизмерен проблем. Ако обектът е хвърлен нагоре или насилвано е хвърлен право надолу, примерът все още е едномерен, но с обрат.
Движението на снаряда е класическа категория проблеми със свободно падане. В действителност, тези събития се развиват в триизмерния свят, но за въвеждащи физически цели те се третират на хартия (или на вашия екран) като двуизмерни: х за дясна и лява (като дясната е положителна), и ш за нагоре и надолу (с нагоре е положително).
Следователно примерите за свободно падане често имат отрицателни стойности за изместване на y.
Може би е противоположно, че някои проблеми със свободно падане се квалифицират като такива.
Имайте предвид, че единственият критерий е, че единствената сила, действаща върху обекта, е гравитацията (обикновено гравитацията на Земята). Дори даден предмет да бъде изстрелян в небето с колосална първоначална сила, в момента, в който обектът се освободи и след това, единствената сила, действаща върху него, е гравитацията и тя вече е снаряд.
Уникалният принос на гравитацията
Уникално интересно свойство на ускорението поради гравитацията е, че то е едно и също за всички маси.
Това далеч не беше очевидно до дните на Галилео Галилей (1564-1642). Това е така, защото в действителност гравитацията не е единствената сила, действаща като обект, и ефектите на въздушното съпротивление са склонни да причиняват по-бавни ускорения на по-леките предмети - нещо, което всички забелязваме, когато сравняваме скоростта на падане на скала и перо.
Галилео провежда гениални експерименти в „опиращата“ се в Пиза кула, доказвайки чрез отпадане на маси с различни тегла от високия връх на кулата, че гравитационното ускорение не зависи от масата.
Решаване на проблеми със свободно падане
Обикновено търсите да определите началната скорост (v0y), крайна скорост (vш) или докъде е паднало нещо (y - y0). Въпреки че гравитационното ускорение на Земята е постоянно 9,8 m / s2, другаде (например на Луната) постоянното ускорение, преживяно от обект при свободно падане, има различна стойност.
За свободно падане в едно измерение (например ябълка, която пада направо от дърво), използвайте кинематичните уравнения в Кинематични уравнения за свободно падащи обекти секция. За проблем с движението на снаряда в две измерения използвайте кинематичните уравнения в секцията Системи за движение и координати на снаряда.
Кинематични уравнения за свободно падащи обекти
Всичко гореизброено може да бъде сведено за настоящите цели до следните три уравнения. Те са пригодени за свободно падане, така че "y" абонатите да могат да бъдат пропуснати. Да приемем, че ускорението според конвенцията на физиката е равно на –g (с положителната посока следователно нагоре).
Пример 1: Странно животинско птиче витае във въздуха на 10 м директно над главата ви, дръзвайки да го ударите с гнилия домат, който държите. С каква минимална начална скорост v0 ще трябва ли да хвърляте домата право нагоре, за да гарантирате, че той ще достигне целта си за пробиване?
Това, което се случва физически, е, че топката спира, поради силата на гравитацията, точно когато достигне необходимата височина, така че тук, vш = v = 0.
Първо избройте известните си количества: v = 0, g = –9,8 m / s2, у - у0 = 10 м
По този начин можете да използвате третото от уравненията по-горе, за да решите:
0 = V02 - 2 (9,8 m / s2) (10 m);
V0*2* = 196 m2/с2;
V0 = 14 m / s
Това е около 31 мили в час.
Системи за движение и координати на снаряда
Движението на снаряда включва движението на обект в (обикновено) две измерения под силата на гравитацията. Поведението на обекта в посока x и y-посока може да се опише отделно при сглобяването на по-голямата картина на движението на частиците. Това означава, че "g" се появява в повечето уравнения, необходими за решаване на всички проблеми с движението на снаряда, а не само в тези, включващи свободно падане.
Кинематичните уравнения, необходими за решаване на основни проблеми с движението на снаряда, които пропускат въздушното съпротивление:
x = x0 + v0xt (за хоризонтално движение)
Vш = v0y - gt
у - у0 = v0yt - (1/2) gt2
Vш2 = v0y2 - 2g (y - y0)
Пример 2: Един смелчак решава да се опита да кара „ракетната си кола“ през пролуката между съседни покриви на сгради. Те са разделени от 100 хоризонтални метра, а покривът на сградата на "излитане" е с 30 м по-висок от втория (това е почти 100 фута, или може би 8 до 10 "етажа", т.е. нива).
Пренебрегвайки въздушното съпротивление, колко бързо ще трябва да се движи, когато напуска първия покрив, за да се увери, че току-що ще достигне втория покрив? Да приемем, че вертикалната му скорост е нула в момента, в който колата излита.
Отново избройте известните си количества: (x - x0) = 100m, (y - y0) = –30m, v0y = 0, g = –9,8 m / s2.
Тук се възползвате от факта, че хоризонталното движение и вертикалното движение могат да се оценяват независимо. Колко време ще отнеме колата до свободно падане (за целите на движението y) 30 m? Отговорът е даден от y - y0 = v0yt - (1/2) gt2.
Попълване на известните количества и решаване на t:
−30 = (0) t - (1/2) (9.8) t2
30 = 4.9т2
t = 2,47 s
Сега включете тази стойност в x = x0 + v0xт :
100 = (v0x)(2.74)
V0x = 40,4 m / s (около 90 мили в час).
Това може би е възможно, в зависимост от размера на покрива, но като цяло не е добра идея извън филмите за екшън герои.
Да го измъкнем от парка ... Далеч
Въздушното съпротивление играе основна, недооценена роля в ежедневните събития, дори когато свободното падане е само част от физическата история. През 2018 г. професионален бейзболен играч на име Джанкарло Стантън удари топка с топка достатъчно силно, за да я взриви далеч от домашната плоча при рекордните 121,7 мили в час.
Уравнението за максималното хоризонтално разстояние, което може да достигне изстреляният снаряд, или уравнение на обхвата (виж ресурси), е:
D = v02 грях (2θ) / g
Въз основа на това, ако Стантън беше ударил топката под теоретичния идеален ъгъл от 45 градуса (където sin 2θ е при максималната си стойност 1), топката щеше да измине 978 фута! В действителност домашните бягания почти никога не достигат дори 500 фута. Част, ако това е така, защото ъгълът на изстрелване от 45 градуса за тесто не е идеален, тъй като стъпката идва почти хоризонтално. Но голяма част от разликата се дължи на въздействащите върху скоростта на въздуха съпротивителни ефекти.
Въздушна устойчивост: всичко друго, но „нищожно“
Проблемите по физика със свободно падане, насочени към по-слабо развитите ученици, предполагат липсата на съпротивление на въздуха, тъй като този фактор би въвел друга сила, която може да забави или забави обектите и би трябвало да се отчита математически. Това е задача, която е най-добре запазена за напреднали курсове, но все пак тук се обсъжда.
В реалния свят атмосферата на Земята осигурява известна устойчивост на обект при свободно падане. Частиците във въздуха се сблъскват с падащия обект, което води до преобразуване на част от кинетичната му енергия в топлинна енергия. Тъй като енергията се запазва като цяло, това води до "по-малко движение" или по-бавно увеличаване на скоростта надолу.